Ministry of Education and Science of Ukraine Dnipro University of Technology

FACULTY OF PROSPECTING DEPARTMENT OF TECHNIQUES PROSPECT OF DEPOSITS

"APPROVED"

Head of Department Davydenko Oleksandr <u>A. Aalumper</u> "____" ____ 2019

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

"Deep drilling technology"

Field of study	18 Production and Technology
Specialty	185 Oil and Gas Engineering and
Specialty	Technology
Academic degree	Bachelor
Academic program	Oil and Gas Engineering and Technology
Type of discipline	selective
Total workload	4 ECTS credits (120 hours)
Type of final assessment	exam
Period of study	8th semester
Language of study	English

Lecturer: associate Professor Ignatov Andrii Prolonged: for 20 __ / 20__ academic year _____ (_____) "__" __ 20__. for 20 __ / 20__ academic year _____ (_____) "__" __ 20__.

> Dnipro NTU "DP" 2019

Work program of the academic discipline "Deep drilling technology" for bachelor's specialty 185 "Oil and Gas Engineering and Technology" / A. Ignatov / NTU "Dnipro Polytechnic" Department Of Techniques Prospect Of Deposits. – D.: NTU «DP» 2019 - 12 p.

Authors:

Ignatov Andrii, associate Professor of the Techniques Prospect Of Deposits, Ph. D.

The work program regulates:

- key goals and objectives;

- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;

- the content of the discipline formed according to the criterion "disciplinary learning outcomes";

- the discipline program (thematic plan by different types of classes);

- distribution of the discipline workload by different types of classes;

- an algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and evaluation criteria);

- criteria and procedures for evaluating the academic achievements of applicants by discipline;

- the contents of the educational and methodological support of the discipline;

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

Approved by the decision of the Methodical Commission of specialty 185 "Oil and Gas Engineering and Technology" (protocol № 6 from 07.06.2019).

Recommended for publication by the editorial board of NTUDP (protocol N_{2} 7 from 05.07.2019).

CONTENTS

1 DISCIPLINE OBJECTIVES	4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES	4
3 BASIC DISCIPLINES	4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES	5
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES	5
6 KNOWLEDGE PROGRESS TESTING	6
6.1 GRADING SCALES	6
6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES	6
6.3 EVALUATION CRITERIA	8
7 TOOLS, EQUIPMENT, AND SOFTWARE1	.1
8 RECOMMENDED BIBLIOGRAPHY 1	.1

1 DISCIPLINE OBJECTIVES

In the educational and professional programs of the Dnipro University of Technology specialty 185 "Oil and gas engineering and technology", the distribution of program learning outcomes (NRN) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline S1.10 "Deep drilling technology":

CC1.1	To create drilling technologies for oil and gas wells
CC1.2	To construct oil and gas wells

The objective of discipline - forming of competences is in relation to planning and management of the drilling of offshore petroleum and gas bore holes processes.

The implementation of the objective requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

Code	Disciplinary learning outcomes (DRN)			
NRN	DRN code	content		
CC1.1	CC1.1-S1.10	to construct super-deep oil and gas wells		
CC1.2	CC1.2-S1.10	to expect the optimal modes of the drilling of super-deep oil and gas wells		

3 BASIC DISCIPLINES

Subjects	The acquired learning outcomes		
S3 Geology basics of	to characterize geological processes and basic patterns of rock formation,		
oil and gas deposits	including oil and gas deposits		
S5 Oil and gas	to demonstrate ability calculations of the parameters of hydro-gas dynamic		
mechanics	processes that accompany the movement of oil and gas in reservoirs / wells /		
	industrial and main pipelines, taking into account the basic laws of		
	thermodynamics, hydraulics and gas dynamics		
	to analyze the technical condition of the elements of technological		
	equipment of the systems of production, transportation and storage of oil		
	and gas using methods based on the basics of materials science and machine		
	mechanics		
S17 Oil and gas	to classify machines, equipments, building and instrument for the		
equipment	production of oil and gas		
	to analyse and estimate the state of elements of oil and gas objects		
	to execute the choice of equipment and equipment for the production of oil		
	and gas		
S14 Well drilling	to demonstrate ability of development projects of elements flowsheets and		
(for oil and gas);	technical devices of the systems well-drilling		
	analyze the operating modes of the components of an oil and gas facility,		
	make the optimum choice of technological equipment, optimize the		
	operating mode by a certain criterion		
	to create drilling technologies for wells		
	provide regulatory and technical support for the processes of oil and gas		
	wells construction		

Subjects	The acquired learning outcomes			
	organize work on the construction of oil and gas wells under conditions of			
	high productivity, safety and minimum costs			
	to control the construction of oil and gas wells using modern methods of			
	analysis and information processing			

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

	ad	Distribution by forms of education , <i>hours</i>					
Type of	Worklo: hours	Full-time		Part-time		Distance	
classes		Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)
lecture	90	26	64	-	-	-	-
practical	30	13	27	-	-	-	-
laboratory	-	-	-	-	-	-	-
workshops	-	-	-	-	-	-	_
TOGETHER	120	39	81	-	-	-	-

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Ciphers DRN	Types and topics of training sessions	The volume of components, <i>hours</i>
	LECTURES	90
CC1.1-S1.10	1 Composition of matter of the earth's crust of super-	8
	deep horizons	
CC1.1-S1.10	2 Development and long-term of petroleum and gas	8
	industry of super-deep horizons	
CC1.1-S1.10	3 Modern state of production and use of	8
	hydrocarbons	
CC1.1-S1.10	4 Special features production of shale gas, gas of	8
	dense collectors, methane of coal beds and other	
	types of natural gas of super-deep horizons	
CC1.1-S1.10	5 Basic oil-and-gas bearing provinces of Europe and	8
	Ukraine	
CC1.1-S1.10	6 Special features of being of water, oil and gas are in	10
	super-deep natural reservoirs	
CC1.1-S1.10	7 Description of the state of accumulations of	6
	hydrocarbons is on super-deep horizons	
CC1.1-S1.10	8 Deposits of hydrocarbons are in the rocks of	8
	crystalline foundation of super-deep horizons	
CC1.1-S1.10	9 Classification, constructions, drillings and	6
	researches of super-deep bore holes	
CC1.1-S1.10	10 Methods of the searching super-deep drilling	4
CC1.2-S1.10		
CC1.1-S1.10	11 Description of deposits oil and gas is on super-	4
	deep horizons	
CC1.1-S1.10	12 Super-deep searching-prospecting works are on	4
CC1.2-S1.10	offshore fields	
CC1.1-S1.10	13 A safeguard of geological environment is in the	4
CC1.2-S1.10	process of the drilling of super-deep bore holes	

Ciphers DRN	Types and topics of training sessions	The volume of components, <i>hours</i>
CC1.1-S1.10	14 Ecological safety is at implementation of super-	4
CC1.2-S1.10	deep offshore geological prospecting works on oil and	
	gas	
	PRACTICAL TRAINING	30
CC1.1-S1.10	1 A geological structure and presence of oil and gas is	10
CC1.2-S1.10	in super-deep horizons territory of Ukraine	
CC1.1-S1.10	2 Mining rocks-collectors and impenetrable rocks,	10
CC1.2-S1.10	and also terms of bedding of petroleum and gas beds	
	of super-deep horizons	
CC1.1-S1.10	3 Technical means and technologies of freeing of the	10
CC1.2-S1.10	griping metallic boring column are at building of	
	super-deep bore holes	
	TOGETHER	120

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 GRADING SCALES

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

Rating	Institutional
90 100	Excellent
74 89	Good
60 73	Satisfactory
0 59	Failed

The scales of assessment of learning outcomes of the NTUDP students

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of NTUDP.

6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES

The content of diagnostic tools is aimed at controlling the level of knowledge, skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 7th

qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the intermediate and final knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the intermediate and final knowledge progress testing are approved by the appropriate department.

Type of diagnostic tools and procedures for evaluating the intermediate and final knowledge progress testing are given below.

INTERMEDIATE CONTROL		FINAL ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures
lectures	control tasks for	task during lectures	comprehensive	determining the average
	each topic		reference work	results of intermediate
practical	control tasks for	tasks during	(CCW)	controls;
	each topic	practical classes		
	or individual task	tasks during		CCW performance during
		independent work		the examination at the
				request of the student

Diagnostic and assessment procedures

During the intermediate control, the lectures are evaluated by determining the quality of the performance of the control specific tasks. Practical classes are assessed by the quality of the control or individual task.

If the content of a particular type of teaching activity is subordinated to several descriptors, then the integral value of the assessment may be determined by the weighting coefficients set by the lecturer.

Provided that the level of results of the intermediate controls of all types of training at least 60 points, the final control can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the intermediate control, every student during the final knowledge progress testing has the right to perform the CDF, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CDF should be consistent with the allotted time for completion. The number of CDF options should ensure that the task is individualized.

The value of the mark for the implementation of the CDF is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the CDF performance assessment can be determined by taking into account the weighting factors established by the department for each NLC descriptor.

6.3 EVALUATION CRITERIA

The actual student learning outcomes are identified and measured against what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of the learning outcomes.

To evaluate the performance of the control tasks during the intermediate control of lectures and practicals the assimilation factor is used as a criterion, which automatically adapts the indicator to the rating scale:

$$O_i = 100 a / m$$
,

where a - number of correct answers or significant operations performed according to the solution standard; m - the total number of questions or substantial operations of the standard.

Individual tasks and complex control works are expertly evaluated using criteria that characterize the ratio of competency requirements and evaluation indicators to a rating scale.

The content of the criteria is based on the competencies identified by the NLC for the Bachelor's level of higher education (given below).

General criteria for achieving learning outcomes 7th qualification for LDCs (BA)

Integral competence is the ability to solve complex problems and specialized practical problems in a particular area of professional activities or in a learning process that involves the use of certain theories and methods of the relevant scientific areas and characterized by complexity and conditions uncertainty.

descriptors NL C	Requirements for knowledge, communication,	Indicator		
descriptors NLC	autonomy and responsibility	evaluation		
	Knowledge			
 Conceptual 	- A great - proper, reasonable, sensible. Measures the	95-100		
knowledge acquired	presence of: - conceptual knowledge; - a high degree of			
during the training and	state ownership issues; - critical understanding of the main			
professional activities,	theories, principles, methods and concepts in education and			
including some	careers			
knowledge of modern	A non-gross contains mistakes or errors	90-94		
achievements;	The answer is correct but has some inaccuracies	85-89		
 critical 	A correct some inaccuracies but has also proved insufficient	80-84		
understanding of the	The answer is correct but has some inaccuracies, not	74-79		
main theories,	reasonable and meaningful			
principles, methods,	A fragmentary	70-73		
and concepts in	A student shows a fuzzy idea of the object of study	65-69		
education and careers	Knowledge minimally satisfactory	60-64		
	Knowledge unsatisfactory	<60		
Ability				

descriptors NLC	Requirements for knowledge, communication,	Indicator
descriptors NLC	autonomy and responsibility	evaluation
 solving complex 	- The answer describes the ability to:	95-100
problems and	- identify the problem;	
unforeseen problems in	- formulate hypotheses;	
specialized areas of	- solve problems;	
professional and/or	- choose adequate methods and tools;	
training, which	- collect and interpret logical and understandable	
involves the collection	information;	
and interpretation of	- use innovative approaches to solving the problem	
information (data),	The answer describes the ability to apply knowledge in	90-94
choice of methods and	practice with no blunders	
tools, the use of	The answer describes the ability to apply knowledge in	85-89
innovative approaches	practice but has some errors in the implementation of a	
	requirement	
	The answer describes the ability to apply knowledge in	80-84
	practice but has some errors in the implementation of the	
	two requirements	
	The answer describes the ability to apply knowledge in	74-79
	practice but has some errors in the implementation of the	,,
	three requirements	
	The answer describes the ability to apply knowledge in	70-73
	practice but has some errors in the implementation of the	10 10
	four requirements	
	The answer describes the ability to apply knowledge in	65-69
	practice while performing tasks on the model	00 07
	A characterizes the ability to apply knowledge in	60-64
	performing tasks on the model but with uncertainties	00 01
	The level of skills is poor	<60
	Communication	100
• report to specialists	- Fluent problematic area Clarity response (report)	95-100
and non-specialists of	I anguage - correct:	22 100
information ideas	net	
problems solutions and		
their experience in the		
field of professional	accurate;	
activity.	logic;	
• the ability to form an	expressive;	
effective	concise.	
communication	Communication strategy:	
strategy	coherent and consistent development of thought;	
Sudogy	availability of own logical reasoning;	
	relevant arguments and its compliance with the provisions	
	defended;	
	the correct structure of the response (report);	
	correct answers to questions;	
	appropriate equipment to answer questions;	
	the ability to draw conclusions and formulate proposals	
	Adequate ownership industry issues with minor faults.	90-94
	Sufficient clarity response (report) with minor faults.	
	Appropriate communication strategy with minor faults	
	Good knowledge of the problems of the industry. Good	85-89

descriptors NLC	Requirements for knowledge, communication,	Indicator
	autonomy and responsibility	evaluation
	clarity response (report) and relevant communication	
	strategy (total three requirements are not implemented)	
	Good knowledge of the problems of the industry. Good	80-84
	clarity response (report) and relevant communication	
	strategy (a total of four requirements is not implemented)	
	Good knowledge of the problems of the industry. Good	74-79
	clarity response (report) and relevant communication	
	strategy (total not implemented the five requirements)	
	Satisfactory ownership issues of the industry. Satisfactory	70-73
	clarity response (report) and relevant communication	
	strategy (a total of seven requirements not implemented)	
	Partial ownership issues of the industry. Satisfactory clarity	65-69
	response (report) and communication strategy of faults	
	(total not implemented nine requirements)	
	The fragmented ownership issues of the industry.	60-64
	Satisfactory clarity response (report) and communication	
	strategy of faults (total not implemented 10 requirements)	
	The level of poor communication	<60
	Autonomy and responsibility	
management actions	- Excellent individual ownership management	95-100
or complex projects,	competencies focused on:	
responsible for	1) management of complex projects, providing:	
decision-making in	- exploratory learning activities marked the ability to	
unpredictable	independently evaluate various life situations, events, facts,	
conditions;	detect and defend a personal position:	
• responsible for the	- the ability to work in a team:	
professional	- control of their own actions:	
development of	2) responsibility for decision-making in unpredictable	
individuals and/or	conditions, including:	
groups	- justify their decisions the provisions of the regulatory	
• the ability to continue	framework of sectoral and national levels:	
study with a high	- independence while performing tasks;	
degree of autonomy	- lead in discussing problems;	
	- responsibility for the relationship;	
	3) responsible for the professional development of	
	individuals and/or groups that includes:	
	- use of vocational-oriented skills;	
	- the use of evidence from independent and correct	
	reasoning;	
	- possession of all kinds of learning activities;	
	4) the ability to further study with a high degree of	
	autonomy, which provides:	
	- degree possession of fundamental knowledge;	
	- independent evaluation judgments;	
	- high level of formation of general educational skills;	
	- search and analysis of information resources	
	Confident personality possession competency management	90-94
	(not implemented two requirements)	
	Good knowledge management competencies personality	85-89
	(not implemented three requirements)	

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
	Good knowledge management competencies personality	80-84
	(not implemented the four requirements)	
	Good knowledge management competencies personality	74-79
	(not implemented six requirements)	
	Satisfactory ownership of individual competence	70-73
	management (not implemented seven requirements)	
	Satisfactory ownership of individual competence	65-69
	management (not implemented eight claims)	
	The level of autonomy and responsibility fragmented	60-64
	The level of autonomy and responsibility poor	<60

7 TOOLS, EQUIPMENT, AND SOFTWARE

Technical training tools via multimedia software. Distance learning platform Moodle.

8 RECOMMENDED BIBLIOGRAPHY

- 1 Tekhnolohiia i tekhnika burinnia / V. Voitenko, V. Vytryk. K.: Tsentr Yevropy, 2012. 708 s.
- 2 Boiko V.S. Rozrobka ta ekspluatatsiia naftovykh rodovyshch. K.: Real-Prynt, 2004. - 695 s.
- 3 Kotskulych Ya.S., Kochkodan Ya.M.. Burinnia naftovykh ta hazovykh sverdlovyn. Kolomyia: Vik, 1999.
- 4 Kotskulych Ya.S. Zakinchuvannia sverdlovyn / Ya.S. Kotskulych, O.V. Tyshchenko. K.: Interpres LTD, 2004. 366 s.
- 5 Metodychni vkazivky do praktychnykh zaniat z dystsypliny «Tekhnolohiia hlybynnoho burinnia» dlia studentiv spetsialnosti 185 «Naftohazova inzheneriia ta tekhnolohii» / Uporiad.: A.O. Ignatov. – D.: NTU «Dniprovska politekhnika», 2018. – 38 s.

Educational edition

WORK PROGRAM OF THE ACADEMIC DISCIPLINE "Deep drilling technology" for bachelors 185 "Oil and Gas Engineering and Technology"

Author: Ignatov Andrii

Prepared for publication Dnipro University of Technology. Certificate of registration in the State Register, control number 1842 49005, Dnipro, Dmytra Yavornytskoho Ave. 19